8 research outputs found

    Analysis and Mitigation of Channel Non-Reciprocity in TDD MIMO Systems

    Get PDF
    The ever-growing demands for higher number of connected devices as well as higher data rates and more energy efficient wireless communications have necessitated the use of new technical solutions. One of the main enablers in this respect is Multiple-Input Multiple-Output (MIMO) systems in which transmitting and receiving sides are equipped with multiple antennas. Such systems need precise information of the MIMO radio channel available at the transmitter side to reach their full potential. Owing to the reciprocity of uplink and downlink channels in Time Division Duplexing (TDD) systems, Base Stations (BSs) may acquire the required channel state information for downlink transmission by processing the received uplink pilots. However, such reciprocity only applies to the physical propagation channels and does not take into consideration the so-called observable or effective uplink and downlink channels which also include the possible non-reciprocal behavior of the involved transceiver circuits and antenna systems. This thesis focuses on the channel non-reciprocity problem in TDD MIMO systems due to mismatches in Frequency Response (FR) and mutual coupling of transmitting and receiving chains of transceivers and associated antenna systems. The emphasis in the work and developments is placed on multi-user MIMO precoded downlink transmission. In this respect, the harmful impacts of channel non-reciprocity on the performance of such downlink transmission are analyzed. Additionally, non-reciprocity mitigation methods are developed seeking to reclaim TDD reciprocity and thus to avoid the involved performance degradations. Firstly, the focus is on the small-scale MIMO systems where BSs are equipped with relatively limited number of antennas, say in the order of 4 to 8. The provided analysis on Zero-Forcing (ZF) and eigen-based precoding schemes in single-cell scenario shows that both schemes experience considerable performance degradations in the presence of FR and mutual coupling mismatches. Whereas, in general, the system performance is more sensitive to i) non-reciprocity sources in the BS transceiver; and ii) mutual coupling mismatches. Then, assuming reasonably good antenna isolation, an Over-The-Air (OTA) pilot-based algorithm is proposed to efficiently mitigate the BS transceiver non-reciprocity. The numerical results indicate high accuracy in estimating the BS transceiver non- reciprocity parameters as well as considerable improvement in the performance of the system. In multi-cell scenario, both centralized and decentralized precoding approaches are covered while the focus is on the impacts of FR mismatches of UE transceivers. The how that there is severe degradation in the performance of decentralized precoding while centralized precoding is immune to such channel non-reciprocity impacts. Secondly, the so-called massive MIMO systems are considered in which the number of antennas in the BS side is increased with an order of magnitude or more. Based on the detailed developed signal models, closed-form analytical expressions are first provided for effective signal-to-interference-plus-noise ratios of both ZF and maximum ratio transmission precoding schemes. The analysis covers the joint impacts of channel non-reciprocity and imperfect uplink channel estimation and shows that while both precoding schemes suffer from channel non-reciprocity impacts, ZF is more sensitive to such non-idealities. Next, a concept and an algorithm are proposed, involving UE side measurements and processing, to be deployed in the UE side to efficiently estimate the level of BS transceiver non-reciprocity. This enables the UEs to inform the BS about the optimum time to perform channel non-reciprocity mitigation round and thus improves the spectral efficiency. Finally, in order to mitigate channel non-reciprocity in massive MIMO systems, an efficient iterative OTA pilot-based algorithm is proposed which estimates and mitigates transceiver non-reciprocity impacts in both BS and UE sides. Compared to the state-of-the-art methods, the simulation results indicate substantial improvements in system spectral efficiency when the proposed method is being used. Overall, the analyses provided in this thesis can be used as valuable tools to better understand practical TDD MIMO systems which can be very helpful in designing such systems. Furthermore, the channel non-reciprocity mitigation methods proposed in this thesis can be deployed in practical TDD MIMO syst channel reciprocity and thus significantly increase the spectral efficiency

    System-Level Performance Analysis and Optimization of IEEE 802.11ah -- the New Sub-1 GHz Wi-Fi

    Get PDF
    Internet of Things (IoT) is a concept which will have major effects on our future lives. It will introduce a novel dimension to the world of information and communication technology where connectivity will be available anytime, anywhere for anything. This will implicitly introduce billions of devices and stations that need to communicate within the IoT network. Consequently, it is necessary to design new wireless technologies to support them. IEEE 802.11ah is one of these technologies which exploit IEEE 802.11 standard advantages while benefiting from certain changes specifically made to satisfy IoT requirements like being able to handle this amount of devices and being power efficient. IEEE 802.11ah which operates in sub-1 GHz band is expected to assure 1 km coverage with at least 100 Kbps data rate and it should support beyond 2000 stations. This thesis evaluates the performance of IEEE 802.11ah and some of its features in various scenarios using a system-level simulator developed in this research work. Comparing the developed simulator's results with two analytical models, one introduced in the literature and one developed in this thesis, proves the high accuracy of the simulator in modeling the IEEE 802.11ah network. The performance analysis shows that for IoT use cases with relatively low packet size (256 bytes), it is better not to use RTS/CTS access scheme. Based on the presented results, it is concluded that frequency management mechanisms, link adaptation algorithms and Restricted Access Window (RAW) mechanism, should be used in most of the practical cases to have higher energy efficiency and improve the general system performance

    Analysis and Mitigation of Channel Non-Reciprocity in TDD MIMO Systems

    Get PDF
    The ever-growing demands for higher number of connected devices as well as higher data rates and more energy efficient wireless communications have necessitated the use of new technical solutions. One of the main enablers in this respect is Multiple-Input Multiple-Output (MIMO) systems in which transmitting and receiving sides are equipped with multiple antennas. Such systems need precise information of the MIMO radio channel available at the transmitter side to reach their full potential. Owing to the reciprocity of uplink and downlink channels in Time Division Duplexing (TDD) systems, Base Stations (BSs) may acquire the required channel state information for downlink transmission by processing the received uplink pilots. However, such reciprocity only applies to the physical propagation channels and does not take into consideration the so-called observable or effective uplink and downlink channels which also include the possible non-reciprocal behavior of the involved transceiver circuits and antenna systems. This thesis focuses on the channel non-reciprocity problem in TDD MIMO systems due to mismatches in Frequency Response (FR) and mutual coupling of transmitting and receiving chains of transceivers and associated antenna systems. The emphasis in the work and developments is placed on multi-user MIMO precoded downlink transmission. In this respect, the harmful impacts of channel non-reciprocity on the performance of such downlink transmission are analyzed. Additionally, non-reciprocity mitigation methods are developed seeking to reclaim TDD reciprocity and thus to avoid the involved performance degradations. Firstly, the focus is on the small-scale MIMO systems where BSs are equipped with relatively limited number of antennas, say in the order of 4 to 8. The provided analysis on Zero-Forcing (ZF) and eigen-based precoding schemes in single-cell scenario shows that both schemes experience considerable performance degradations in the presence of FR and mutual coupling mismatches. Whereas, in general, the system performance is more sensitive to i) non-reciprocity sources in the BS transceiver; and ii) mutual coupling mismatches. Then, assuming reasonably good antenna isolation, an Over-The-Air (OTA) pilot-based algorithm is proposed to efficiently mitigate the BS transceiver non-reciprocity. The numerical results indicate high accuracy in estimating the BS transceiver non- reciprocity parameters as well as considerable improvement in the performance of the system. In multi-cell scenario, both centralized and decentralized precoding approaches are covered while the focus is on the impacts of FR mismatches of UE transceivers. The how that there is severe degradation in the performance of decentralized precoding while centralized precoding is immune to such channel non-reciprocity impacts. Secondly, the so-called massive MIMO systems are considered in which the number of antennas in the BS side is increased with an order of magnitude or more. Based on the detailed developed signal models, closed-form analytical expressions are first provided for effective signal-to-interference-plus-noise ratios of both ZF and maximum ratio transmission precoding schemes. The analysis covers the joint impacts of channel non-reciprocity and imperfect uplink channel estimation and shows that while both precoding schemes suffer from channel non-reciprocity impacts, ZF is more sensitive to such non-idealities. Next, a concept and an algorithm are proposed, involving UE side measurements and processing, to be deployed in the UE side to efficiently estimate the level of BS transceiver non-reciprocity. This enables the UEs to inform the BS about the optimum time to perform channel non-reciprocity mitigation round and thus improves the spectral efficiency. Finally, in order to mitigate channel non-reciprocity in massive MIMO systems, an efficient iterative OTA pilot-based algorithm is proposed which estimates and mitigates transceiver non-reciprocity impacts in both BS and UE sides. Compared to the state-of-the-art methods, the simulation results indicate substantial improvements in system spectral efficiency when the proposed method is being used. Overall, the analyses provided in this thesis can be used as valuable tools to better understand practical TDD MIMO systems which can be very helpful in designing such systems. Furthermore, the channel non-reciprocity mitigation methods proposed in this thesis can be deployed in practical TDD MIMO syst channel reciprocity and thus significantly increase the spectral efficiency

    System-Level Performance Analysis and Optimization of IEEE 802.11ah -- the New Sub-1 GHz Wi-Fi

    Get PDF
    Internet of Things (IoT) is a concept which will have major effects on our future lives. It will introduce a novel dimension to the world of information and communication technology where connectivity will be available anytime, anywhere for anything. This will implicitly introduce billions of devices and stations that need to communicate within the IoT network. Consequently, it is necessary to design new wireless technologies to support them. IEEE 802.11ah is one of these technologies which exploit IEEE 802.11 standard advantages while benefiting from certain changes specifically made to satisfy IoT requirements like being able to handle this amount of devices and being power efficient. IEEE 802.11ah which operates in sub-1 GHz band is expected to assure 1 km coverage with at least 100 Kbps data rate and it should support beyond 2000 stations. This thesis evaluates the performance of IEEE 802.11ah and some of its features in various scenarios using a system-level simulator developed in this research work. Comparing the developed simulator's results with two analytical models, one introduced in the literature and one developed in this thesis, proves the high accuracy of the simulator in modeling the IEEE 802.11ah network. The performance analysis shows that for IoT use cases with relatively low packet size (256 bytes), it is better not to use RTS/CTS access scheme. Based on the presented results, it is concluded that frequency management mechanisms, link adaptation algorithms and Restricted Access Window (RAW) mechanism, should be used in most of the practical cases to have higher energy efficiency and improve the general system performance

    Estimation and Mitigation of Channel Non-Reciprocity in Massive MIMO

    Get PDF
    Time-division duplex (TDD) based massive MIMO systems rely on the reciprocity of the wireless propagation channels when calculating the downlink precoders based on uplink pilots. However, the effective uplink and downlink channels incorporating the analog radio front-ends of the base station (BS) and user equipments (UEs) exhibit non-reciprocity due to non-identical behavior of the individual transmit and receive chains. When downlink precoder is not aware of such channel non-reciprocity (NRC), system performance can be significantly degraded due to NRC induced interference terms. In this work, we consider a general TDD-based massive MIMO system where frequency-response mismatches at both the BS and UEs, as well as the mutual coupling mismatch at the BS large-array system all coexist and induce channel NRC. Based on the NRC-impaired signal models, we first propose a novel iterative estimation method for acquiring both the BS and UE side NRC matrices and then also propose a novel NRC-aware downlink precoder design which utilizes the obtained estimates. Furthermore, an efficient pilot signaling scheme between the BS and UEs is introduced in order to facilitate executing the proposed estimation method and the NRC-aware precoding technique in practical systems. Comprehensive numerical results indicate substantially improved spectral efficiency performance when the proposed NRC estimation and NRC-aware precoding methods are adopted, compared to the existing state-of-the-art methods.acceptedVersionPeer reviewe

    Impact of Channel Non-Reciprocity in Cell-Free Massive MIMO

    Get PDF
    In cell-free (CF) massive MIMO, a large number of access points (APs) distributed over the coverage area jointly serve a set of users over the same time/frequency resources. In this paper, we study the impact of channel non-reciprocity (NRC) and imperfect channel state information in CF massive MIMO systems. We derive analytical expressions of capacity lower bounds, including a physically inspired non-reciprocal channel model where the NRC variables vary slowly in time. The conclusion is that under conjugate beamforming, the achievable downlink rate is only sensitive to AP side phase non-reciprocity, hence the calibration requirements can be less restrictive since only the phase reciprocity errors have to be corrected. These findings are new compared to the existing literature where the NRC variables are commonly assumed to be of fast-fading nature.acceptedVersionPeer reviewe

    Performance Analysis of Multi-User Massive MIMO Downlink under Channel Non-Reciprocity and Imperfect CSI

    Get PDF
    This paper analyzes the performance of linearly precoded time division duplex based multi-user massive MIMO downlink system under joint impacts of channel non-reciprocity (NRC) and imperfect channel state information (CSI). We consider a generic and realistic NRC model that accounts for transceiver frequency-response as well as mutual coupling mismatches at both user equipment (UE) and base station (BS) sides. The analysis covers two most prominent forms of linear precoding schemes, namely, zero-forcing (ZF) and maximumratio transmission (MRT), and assumes that only the statistical properties of the beamformed channel are used at the UE side to decode the received signal. Under the approximation of i.i.d. Gaussian channels, closed-form analytical expressions are derived for the effective signal to interference and noise ratios (SINRs) and the corresponding capacity lower bounds. The expressions show that, in moderate to high SNR, the additional interference caused by imperfect NRC calibration can degrade the performance of both precoders significantly. Moreover, ZF is shown to be more sensitive to NRC than MRT. Numerical evaluations with practical NRC levels indicate that this performance loss in the spectral efficiency can be as high as 42% for ZF, whereas it is typically less than 13% for MRT. It is also shown that due to the NRC, the asymptotic large-antenna performance of both precoders saturate to an identical finite level. The derived analytical expressions provide useful tools and valuable technical insight, e.g., into calculating the NRC calibration requirements in BSs and UEs for any given specific performance targets in terms of effective SINR or the system capacity bound.acceptedVersionPeer reviewe

    Impact of Power Amplifier Nonlinearities in Multi-user Massive MIMO Downlink

    No full text
    In this paper, we investigate the impact of power amplifier (PA) nonlinear distortion in pre-coded multi-user large antenna or massive MIMO downlink systems. First, detailed signal and system models are derived for the received signal at single-antenna user equipment (UE) under channel-aware linear precoding in the base-station combined with behavioral models for the individual PA units, covering both single-carrier and multi-carrier modulation schemes. Based on the derived models, it is shown that the PA induced nonlinear distortion can also combine coherently in the channel, depending on the relative differences between the phase characteristics of the different PA units and the corresponding distortion terms. Furthermore, it is also shown that the impact of nonlinear PAs and the resulting linear and nonlinear multi-user interference, quantified in terms of the received signal-to- interference-plus-noise ratio (SINR), is largely dependent on the effective or observable linear gain in the UE receiver demodulation stage. By observing only the instantaneous direct linear gain, the PA induced nonlinear distortion has a substantial impact on the effective SINR, even if very large number of TX antennas is adopted relative to the number of spatially multiplexed UEs. On the other hand, if the statistically averaged linear gain can be observed, the impact of nonlinear PAs is far less severe. These findings give thus new insight, not only to the core impact of nonlinear PAs in massive MIMO systems but also to the downlink reference signal design, radio frame design and radio resource management in time, in order to facilitate the estimation of the statistically averaged linear gains in the receivers within the scheduled transmission and processing blocks
    corecore